今日头条算法原理(全文)
  • 资讯中心
  • 行业新闻相关
  • 专家建站观点
  • 建站信息百科

今日头条算法原理(全文)

来源: 飞云专业建站工作室发布时间:2018-02-03 16:52:03

注:本文主要分享了今日头条推荐系统概览以及内容分析、用户标签、评估分析,内容安全等原理。

今天,算法分发已经是信息平台、搜索引擎、浏览器、社交软件等几乎所有软件的标配,但同时,算法也开始面临质疑、挑战和误解。今日头条的推荐算法,从 2012 年 9 月第一版开发运行至今,已经经过四次大的调整和修改。

今日头条委托资深算法架构师曹欢欢博士,公开今日头条的算法原理,以期推动整个行业问诊算法、建言算法;通过让算法透明,来消除各界对算法的误解,并逐步推动整个行业让算法更好的造福社会。

作者:曹欢欢博士,今日头条资深算法架构师

以下为《今日头条算法原理》全文:

今日头条资深算法架构师曹欢欢:

本次分享将主要介绍今日头条推荐系统概览以及内容分析、用户标签、评估分析,内容安全等原理。

一、系统概览

推荐系统,如果用形式化的方式去描述实际上是拟合一个用户对内容满意度的函数,这个函数需要输入三个维度的变量。

  • 第一个维度是内容。头条现在已经是一个综合内容平台,图文、视频、UGC小视频、问答、微头条,每种内容有很多自己的特征,需要考虑怎样提取不同内容类型的特征做好推荐。

  • 第二个维度是用户特征。包括各种兴趣标签,职业、年龄、性别等,还有很多模型刻划出的隐式用户兴趣等。

  • 第三个维度是环境特征。这是移动互联网时代推荐的特点,用户随时随地移动,在工作场合、通勤、旅游等不同的场景,信息偏好有所偏移。

结合三方面的维度,模型会给出一个预估,即推测推荐内容在这一场景下对这一用户是否合适。

这里还有一个问题,如何引入无法直接衡量的目标?

推荐模型中,点击率、阅读时间、点赞、评论、转发包括点赞都是可以量化的目标,能够用模型直接拟合做预估,看线上提升情况可以知道做的好不好。但一个大体量的推荐系统,服务用户众多,不能完全由指标评估,引入数据指标以外的要素也很重要。

比如广告和特型内容频控。像问答卡片就是比较特殊的内容形式,其推荐的目标不完全是让用户浏览,还要考虑吸引用户回答为社区贡献内容。这些内容和普通内容如何混排,怎样控制频控都需要考虑。

此外,平台出于内容生态和社会责任的考量,像低俗内容的打压,标题党、低质内容的打压,重要新闻的置顶、加权、强插,低级别账号内容降权都是算法本身无法完成,需要进一步对内容进行干预。

注:以上内容由湖南长沙网站建设公司-飞云专业建站工作室提供。

相关文章
  • 免费咨询

    为您提供一对一解决方案
    立即咨询
  • 联系方式

    15973134570

    全国7×24小时热线服务
免费咨询
您的姓名
您的电话
您的邮箱
咨询内容
验证码 看不清楚,点击刷新
我们会尽快联系您,等待期间需要获取更多信息,请继续访问联系我们。感谢您对我们产品及服务的支持。